9. ФТОР

Фтор не имеет долгоживущих радиоактивных изотопов. В РОСФОНД включены данные для единственного стабильного изотопа ¹⁹F.

9.1. Фтор-19

В библиотеках ENDF/B-VIIb2, JEFF-3.1 и ФОНД-2.2 используется оценка Z.X,Zhao, C.Y.Fu and D.C.Larson (1990). Однако в JEFF-3.1 (=pre.ENDF/B-VII) и в ENDF/B-VIIb2 содержатся откорректированные данные в области энергий до 1 МэВ. В 2005 году группой Л.Лила, Х.Дерриена и Н.Грина были переоценены параметры разрешенных резонансов: с помощью программы SAMMY были обработаны данные эксперимента Ларсона (1976 г.), представляющие собой пропускания для трех наборов толщин образца.

В библиотеке JENDL-3.3 используется оценка T.Sugi (1989 г.) в которой резонансные параметры в области энергий до 100 кэВ определялись либо прямо из экспериментальных работ, либо путем подгонки под эксперимент Ларсона (1976 г.), а в тепловой области под рекомендации Мухабхаба.

1. Общие характеристики

- **1.1.** Z=9
- **1.2.** A=18.998403(¹²C)
- **1.3. Awr**= 18.835198 (для ¹²C); Во всех оценках принято **Aw**=18.8350.
- 1.4. Содержание в естественной смеси: 100%
- 1.5. <u>Перечень нейтронных реакций на основном изотопе</u> приводятся в таблице 1.

	Характеристики неитронных реакц					
MT	Реак- ция	Продукт, T1/2	Энергия реакции, Q, МэВ		Е _{порог} , э В	
			ENDF/B-VII	JENDL-3.3	ENDF/B-VII	JENDL-3.3
16	(n,2n)	F18(109.77 m)	-10.4310	-10.43106	10.9870	10.9854
22	(n,na)	N15	-4.0129	-4.0128	4.2260	4.2259
28	(n,np)	O18	-7.9930	-7.9928	8.4174	8.4172
32	(n,nd)	O17		-13.815		14.5485
102	(n,γ)	F20(11.163 s)	6.6013	6.6014		
103	(n,p)	O19(26.91 s)	-4.0360	-4.0363	4.2503	4.2506
104	(n,d)	O18	-5.7680	-5.7682	6.0742	6.0745
105	(n,t)	017	-7.5570	-7.5574	7.9582	7.9587
107	(n,α)	N16(7.13 s)	-1.5230	-1.5222	1.6039	1.6030

x7

Таблица 1. ктеристики нейтронных реакций

Энергии всех реакций, принятые в ENDF/B-VII и в JENDL-3.3, достаточно (для практических целей) хорошо согласуются друг с другом.

1.6. <u>Радиоактивность</u>: не радиоактивен. Отметим, также, что при взаимодействии нейтронов с ядром фтора не образуется никаких долгоживущих радиоактивных продуктов реакции.

2. Резонансная область: (MF=2)

- 2.1. <u>Спин и четность</u> J^π= 1/2+.
- 2.2. Радиус рассеяния:
- R=5.36(ENDF/B7); R=5.525 ферми(JENDL3.3)
- 2.3. Резонансные параметры

В ENDF/В - не приводятся (сечения во всей области энергий заданы поточечно);

В JENDL – область разрешенных резонансов от 1.Е-5 эВ – 100 кэВ.

В таблице 2 приводятся характеристики взаимодействия в тепловой и в резонансной областях энергии.

Оценка	Взаимодействие	Тепловое сечение	Резонансный интеграл	
	рассеяние	3.740 барн		
ENDF/B-VII	захват	9.58 мбарн	15.2 мбарн	
	полное	3.7496 барн		
	рассеяние	3.741 барн		
JENDL-3.3	захват	9.57 мбарн	18.0 мбарн	
	полное	3.7511 барн		
	рассеяние	3.708 барн		
ENDF/B-V.2	захват	9.50 мбарн	17.6 мбарн	
	полное	3.7175 барн		

Таблица 2 – Тепловое сечение и резонансный интеграл для F-19.

Из приведенной в таблице 2 информации видно, что в тепловой области оценки ENDF/B-VII и JENDL-3.3 хорошо согласуются друг с другом, но в области резонансных энергий между оценками наблюдается расхождение в резонансном интеграле ~ 20%.

По сравнению с широко используемой в качестве реперной оценки ENDF/B-V.2 изменилось сечение радиационного захвата с 9.5 мбарн до 9.57-9.58 мбарн. Резонансный интеграл в JENDL-3.3 изменился незначительно, а в ENDF/B-VII он уменьшился до 15.2 мбарн (~ 15 %).

В компиляции Мухабхаба имеется только рекомендованные данные по тепловому сечению захвата 9.6±0.05 мбарн.

2.4. Область неразрешенных резонансов отсутствует

3.Сечения нейтронных реакций (MF=3)

3.1.Полное сечение(МТ=1)

Оценка полного сечения во всех библиотеках основанно на экспериментальных данных с высоким разрешением группы Ларсона (1976). Однако, в оценке JENDL использовались экспериментальные данные, помещенные в библиотеку EXFOR, в то время как в ENDF/B-VII для R-матричного анализа использовались непосредственно экспериментальные значения пропусканий для трех образцов различной толщины. Вероятно, что эти данные получены группой L.C.Leal, H.Derrien, N.M.Green частным порядком.

В результате и оцененные данные оказываются весьма близкими. Однако, на рисунке 1 приводится сравнение оцененных значений полного сечения с экспериментальными данными Ларсона, доступных в библиотеке EXFOR.

Рисунок 1 – Сравнение полного сечения F-19 в области энергий 0.1 – 1.0 МэВ.

Из приведенного на рисунке 1 сравнения видно, что публично представленные экспериментальные данные Ларсона наилучшим образом описываются в оценках ENDF/B-V.2 и в JENDL-3.3.

В области энергий выше 1 МэВ оценки ENDF/B-VII и -V.2 практически совпадают и хорошо согласуются с оценкой JENDL-3.3 и с экспериментальными данными Ларсона (смотри рисунок 2).

Рисунок 2 – Сравнение полного сечения F-19 в области энергий 1.0 – 5.0 МэВ.

Выводы

В оценке ENDF/B-VII проведена переоценка сечений в энергии до 1 МэВ, результаты которой приводят к худшему согласию полного сечения с экспериментальными данными Ларсона.

Оценки полного сечения из ENDF/B-V.2 и JENDL-3.3 практически совпадают друг с другом и хорошо согласуются с экспериментальными данными.

3.2. Сечение поглощения нейтронов.

Вклад различных составляющих в процесс поглощения нейтронов показан на рисунке 3 на основе оцененных сечений из библиотеки JENDL.

Рисунок 3 – Основные вкладчики в сечение поглощения на F-19.

Из рисунка 3 видно, что до 3 МэВ поглощение нейтронов, главным образом, происходит за счет реакции (n,gamma). Выше 3 Мэв становится определяющей реакция с испусканием альфа частицы, сечение которой в максимуме достигает порядка 200 мбарн.

В районе 5 МэВ становится заметным вклад реакции $(n,p) \sim$ пятидесяти мбарн, а выше 5 МэВ вклады в поглощение нейтронов от реакций (n,d) u(n,t) становятся порядка нескольких мбарн.

Ниже будет проведено сравнение сечений нейтронных реакций в порядке их значимости в процесс поглощения нейтронов.

3.2.1 Сечение реакции (п,gamma).

На рисунке 4 показано общее сравнение оцененных и экспериментальных данных для сечения реакции (n,g) в области энергий до 10 МэВ. Из рисунка видно, что не все оцененные кривые согласуются с экспериментальными данными.

Рисунок 4 – Сравнение сечения радиационного захвата F-19 в области энергий 10.0 кэВ – 10.0 МэВ.

Из приведенного на рисунке 4 сравнения видно, что наиболее согласована с экспериментальными данными оценка JENDL-3.3, хотя воспроизведение резонансных пиков в области энергий выше 100 кэВ в этой оценке оставляет желать лучшего.

3.2.2 Сечение реакции (n,alfa).

На рисунке 5 показано общее сравнение оцененных и экспериментальных данных для сечения реакции (n,alfa) в области энергий до 20 МэВ.

Рисунок 5 – Сравнение сечения реакции (n,a) на F-19 в области энергий до 20.0 МэВ.

Из приведенного на рисунке 5 сравнения видно, что оценка ENDF/B-VII не изменилась по сравнению с версией -V.2 и достаточно хорошо согласуется на начальном этапе с экспериментальными данными Кнеллфольфа (1966 г.), а выше 5 МэВ – с данными Прасада (1966 г.). Оценка JENDL хуже описывает порог реакции, а выше 5 МэВ согласуется и с экспериментальными данными и с оценкой ENDF/B. В области энергий от 9 МэВ до 14 МэВ экспериментальные данные отсутствуют, а расхождения в оцененных сечениях вызваны, главным образом типом интерполяции сечения. Наиболее "свежая" экспериментальная точка Hroka (1980 г.) наилучшим образом согласуется с оценкой JENDL.

3.2.3 Сечение реакции (n,p).

На рисунке 6 показано общее сравнение оцененных и экспериментальных данных для сечения реакции (n,p) в области энергий до 20 МэВ.

Рисунок 6 – Сравнение сечения реакции (n,p) на F-19 в области энергий до 20.0 МэВ.

Из приведенного на рисунке 6 сравнения видно, что в области энергий до 10 МэВ оценка ENDF/B-VII не изменилась по сравнению с версией -V.2. Они расходятся при энергии выше 10 МэВ.

Вплоть до 9 МэВ все оценки хорошо согласуются с имеющимися двумя наборами экспериментальных данных.

В области энергий выше 10 МэВ имеется значительно большее число экспериментальных наборов. В этой области энергий экспериментальные данные наилучшим образом согласуются с оценкой ENDF/B-VII как по величине сечения, так и по поведению.

Выводы

Поглощение нейтронов до 10 МэВ, в целом, лучше согласуется с экспериментальными микроданными в оценке JENDL.

Оценка ENDF/B-VII предпочтительна в области энергий выше 10 МэВ.

3.3. Сечение реакции неупругого рассеяния нейтронов.

В таблице 3 приводится сравнение энергий уровней и энергетических порогов уровней неупругого рассеяния нейтронов для оценок ENDF/B-VII и JENDL-3.3.

номер	ENDF/B-VII		JENDL-3.3	
уровня	Q, MeV	Eth, MeV	Q, MeV	Eth, MeV
1	-0.1099	0.1158	-0.1100	0.1158
2	-0.1970	0.2075	-0.1972	0.2077
3	-1.3460	1.4175	-1.3457	1.4172
4	-1.4590	1.5365	-1.4585	1.5359
5	-1.5540	1.6365	-1.5541	1.6366
6	-2.7800	2.9276	-2.7798	2.9274
7	-3.9070	4.1144	-3.9071	4.1145
8	-3.9990	4.2113	-3.9985	4.2108
9	-4.0320	4.2461	-4.0325	4.2466
10	-4.3780	4.6104	-4.3777	4.6101
11	-4.5490	4.7905	-4.4000	4.6336
12	-4.5580	4.7979		
13	-4.6480	4.8948		
14	-4.6830	4.9316		
15	-5.1060	5.3771		
16	-5.3660	5.6509		
17	-5.4300	5.7183		
18	-5.4640	5.7541		
19	-5.4990	5.7910		
20	-5.5400	5.8341		
21	-5.6210	5.9194		
continuum	-5.6400	5,9368		

Таблица 3 – уровней и пороги реакции при неупругом рассеянии нейтронов на F-19.

Из приведенной в таблице 3 информации видно, что первые десять уровней в обеих оценках близки по своему значению, а далее в оценке JENDL приводится континуум уровней. В оценке ENDF/В уровни приводятся вплоть до энергии 5.621 МэВ, а начиная с 5.64 МэВ приводится континуум уровней.

На рисунке 7 приводится сечения неупругого рассеяния нейтронов для первых пяти уровней.

Рисунок 7 – Сечение неупругого рассеяния F-19 для отдельных уровней. Из рисунка 7 видно, что основной вклад в сечение неупругого рассеяния дают первые два уровня с энергией E=0.110 МэВ и E=0.197 МэВ. Сравнение оцененных значений сечения неупругого рассеяния для указанных уровней с имеющимися экспериментальными данными показано на рисунке 8 и 9 соответственно.

Рисунок 8 - Сечение неупругого рассеяния F-19 для уровня E=109.9 кэВ

Рисунок 9 - Сечение неупругого рассеяния F-19 для уровня E=197.1 кэВ

Из приведенного на рисунках 8 и 9 сравнения видно, что эксперимент Лашука (1994) является подтверждением экспериментальных данных полученных группой Бродера ранее в 1970 году. Поэтому, имеется два независимых эксперимента, лучшее согласие с которыми, наблюдается у оценки JENDL.

Версия VIIb2 оценки ENDF/В для первого уровня улучшила согласованность с экспериментом по сравнению с версией -V.2. А для второго уровня наблюдается даже ухудшение с имеющимися экспериментальными данными.

Аналогичная картина согласованности сечений неупругого рассеяния нейтронов на F-19 с имеющимися экспериментальными данными наблюдается и для суммарного сечения неупругого рассеяния. Сравнение показано на рисунке 10.

Рисунок 10 - Сечение неупругого рассеяния F-19.

Выводы

Неупругое рассеяние нейтронов на фторе, в целом, лучше описывается в оценке JENDL-3.3, поскольку она согласуется с имеющимися экспериментальными микроданными.

4. Заключение

4.1 Выводы

На основании анализа основных нейтронных реакций на F-19 предлагается в РОСФОНДе использовать оценку T.Sugi (1989 г.), присутствующую в JENDL-3.3.

4.2. Автор отбора оцененных данных:

Кощеев В.Н.