6. УГЛЕРОД

Общие замечания.

Природный углерод содержит два стабильных изотопа в следующих атомарных концентрациях:

¹²C – 98.89%; ¹³C – 1.11%.

Существует также весьма долгоживущий ($T_{1/2}$ =5730 у) изотоп 14С, сечения нейтронных реакций на котором также должны быть представлены в библиотеке.

Для отдельных изотопов углерода полных файлов оцененных данных нет. Только в библиотеке EAF-99 представлены данные о нейтронных сечениях, базирующиеся на оценках, сделанные в 1992г Копецким и Ниропом для EAF-3, частично пересмотренные в 1994 г. Грудзевичем, Зеленецким и Пащенко для библиотеки ADL-3 и еще дополненные и частично пересмотренные в 1998 г. Саблетом, Копецким и Форрестом. В современных версиях остальных библиотек углерод представлен файлом для естественной смеси. При этом при энергиях ниже 20 МэВ используются две независимых оценки:

оценка K.SHIBATA (JAERI, 1993г.), в которой сечения при энергиях ниже 4.8 МэВ заменены на оценку, принятую в ENDF/B-VI, используемая в библиотеке JENDL3.3;

оценка С.Ү. Fu, E.J.Axton and F.J.Perey (ORNL, 1990г), используемая в библиотеках ENDF/B-VI, ENDF/B-VII, ФОНД-2.2 и JEF3.1

Ниже приводится сравнение двух этих оценок между собой и с экспериментальными данными.

В библиотеку РОСФОНД намечено включить полный файл данных для природного углерода (раздел A) и файл с данными о нейтронных сечениях для 14 C (раздел Б).

6.1 Углерод-13

Содержание в природной смеси 1.11%.

Полного набора нейтронных данных нет ни в одной библиотеке. В ЕАF-2003 содержится оценка нейтронных сечений всех реакций, возможных при энергиях до 20МэВ. Согласно этой оценке тепловое сечение захвата и резонансный интеграл составляют 1.27 миллибарна и 0.6 миллибарна. Изотоп имеет 3 резонанса, лежащих ниже 1-го резонанса основного изотопа (2078 кэВ) – при 152.9 кэВ, 173.6 кэВ и 1755кэВ. Они учтены в файле данных для природного углерода.

Заключение.

Принять в РОСФОНД файл данных из EAF-2003.

Автор рекомендации Николаев М.Н.

6.2 Углерод-14

1. Общие характеристики С-14

Файл оценки нейтронных реакций для C-14 был взят из EAF-2003, поскольку при ее формировании рассматривались предыдущие оценки EAF99 и ADL3. Она была сделана в 2003 году J-Ch. Sublet, J. Kopecky and R. A. Forrest. В библиотеке содержатся файл нейтронных данных MF=3 для реакций MF=16,17,22,102,104,105,107 и для них же файл распадных данных MF=8, которые не вносятся в окончательный вариант файла C-14.

- **1.1. Z**=6
- **1.2. A**=14
- **1.3. Aw**= 1.388300+1
- 1.4. Содержание в естественной смеси:

1.5. Перечень нейтронных реакций

MT	Реакция	Энергия реакции, Q, МэВ	${ m E}_{ m nopor.},$ ${ m 9B}$
16	(n,2n)	-8.177500+6	8.766600+6
17	(n,3n)	-1.312400+7	1.406900+7
22	(n,na)	-1.201200+7	1.287700+7
102	(n,γ)		
104	(n,d)	-1.860700+7	1.994700+7
105	(n,t)	-1.722700+7	1.846800+7
107	(n, α)	-1.150800+7	1.233700+7

1.6. <u>Радиоактивность</u>: радиоактивен T1/2=5.73e+3 лет β-распад, E=49.5 KeV

2. Резонансная область: (MF=2)

- 2.1. Спин и четность $J^{\pi} = 0^{+}$;
- 2.2. Радиус рассеяния: R=3.253689-1
- 2.3. Резонансные параметры не приводятся (сечения во всей области энергий заданы поточечно)
- 2.4. Область неразрешенных резонансов отсутствует

3. Сечения нейтронных реакций

На рисунке 1 представлены все нейтронные реакции, кроме радиационного захвата. Это сечение показано на отдельных рисунках(2,3), поскольку оно значительно меньше всех остальных.

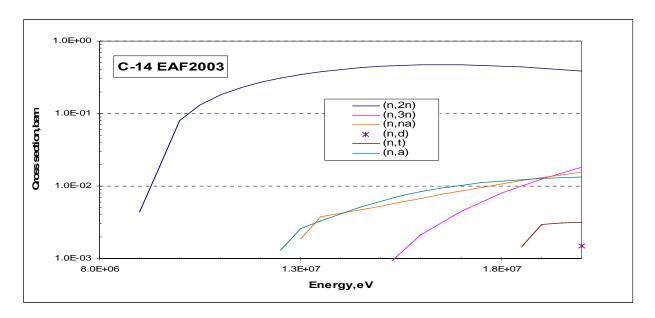


Рисунок 1. Нейтронные сечения на С-14.

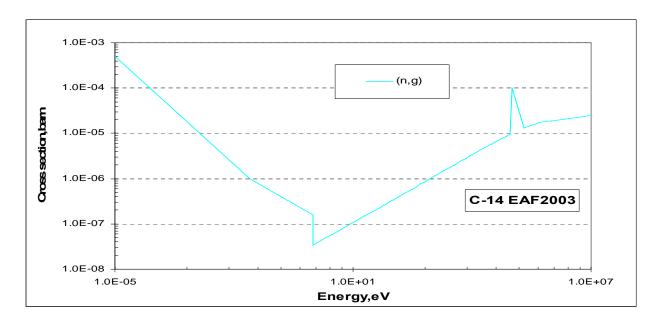


Рисунок 2. Сечение радиационного захвата на С-14 до 10 МэВ.

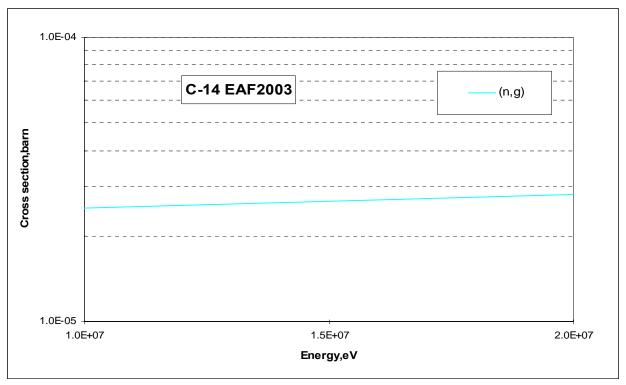


Рисунок3. Сечение радиационного захвата на С-14 от 10 до 20 МэВ.

4. Заключение

4.1.Вывод:

В РОСФОНД рекомендуется принять оценку нейтронных данных С-14 из библиотеки EAF-2003.

4.2. Автор обоснования оцененных данных:

Забродская С.В.

6.3. Природный углерод

1. Общие характеристики

1.7. Z=6

- **1.8. A**=12.00000 (12 C); **A**=13.003355 (13 C). Среднее значение 12.011137
- **1.9. Aw**= 11.89691 (для ¹²C); **Aw**=11.90796 для естественной смеси изотопов. В оценке Фу и др. принято **Aw**=11.8980, что практически совпадает со значением для природной смеси изотопов; в оценке Шибата **Aw**= 11.89690, что практически совпадает со значением для ¹²C. Последнее представляется более рациональным, т.к. ведет к правильным значениям порогов основных реакций, сечения которых определяются основным изотопом.

1.10. Содержание в естественной смеси:

1.11. Перечень нейтронных реакций на основном изотопе.

Таблица 1. Характеристики нейтронных реакций

								1 '
MT	Реак- ция	Продукт, Т1/2	Энергия реакции, Q, МэВ		E_{nopor} , $\ni B$			
			Wapstra	ENDF/B-VII	JENDL-3.3	Wapstra	ENDF/B-VII	JENDL-3.3
23	(n,n'3α)	He3	-7.27475			7.88623		
28	(n,np)	B^{11}	-15.9569	-15.95700		17.29816	17.2980	
102	(n,γ)	C^{13}	4.94630	4.94700	4.94638	-5.36207		
103	(n,p)	$B^{12}(20.2ms)$	-12.5866	-12.5880	-12.5871	13.64452	13.6460	13.6450
104	(n,d)	B^{11}	-13.7323	-13.7330	-13.7323	14.88661	14.8870	14.8866
107	(n, α)	Be ⁹	-5.70125	-5.7020	-5.70150	6.18047	6.18120	6.18075

Энергии всех реакций, принятые в ENDF/B-VII, достаточно (для практических целей) хорошо согласуются с последними оценками¹.

1.12. Радиоактивность: не радиоактивен

2. Резонансная область: (MF=2)

- 2.1. Спин и четность $J^{\pi} = 0 + (приводятся данные для основного изотопа).$
- 2.2. Радиус рассеяния:

R=0.614112(ENDF/B7); R=0.63 ферми(JENDL3.3)

- 2.3. Резонансные параметры не приводятся (сечения во всей области энергий заданы поточечно)
- 2.4. Область неразрешенных резонансов отсутствует

¹ G.Audi, A.H.Wapstra and C.Thibault. "The Ame2003 atomic mass evaluation (II)". Nuclear Physics A729 p. 337, Dec, 2003.

3.Сечения нейтронных реакций (MF=3)

3.1.Полное сечение(МТ=1)

Полное сечение в библиотеках ENDF/B-6 и JENDL3.3 приводится поточечно в двух интервалах – до 4.81 МэВ и выше этой энергии, являющейся порогом неупругого рассеяния. В первом из этих интервалов оценки полного сечения, основанные на совокупности экспериментальных данных и их R-матричного описания, совпадают (рис.1). Выше 4.81 MeV обе оценки основывались на экспериментальных данных: в ENDF/B-6 – в основном на эксперименте Perey(1972), в JENDL3.3 – на эксперименте Cieriacks(1980). Последний эксперимент характеризуется меньшим разбросом экспериментальных данных (см. рис.2), но систематических расхождений между данными этих экспериментов нет. В результате и оцененные данные оказываются весьма близкими: расхождения измеряются десятыми процента и лишь к 20 МэВ возрастают до 1.5% (рис.3). Исключением является окрестность резонанса при 4.9371 МэВ, который в оценке JENFL-3.3 описывается более детально (рис.4). Учитывая, что этот резонанс рекомендован для калибровки энергетической шкалы при измерениях нейтронных сечений, представление данных в JENDL-3.3 представляется более оправданным.

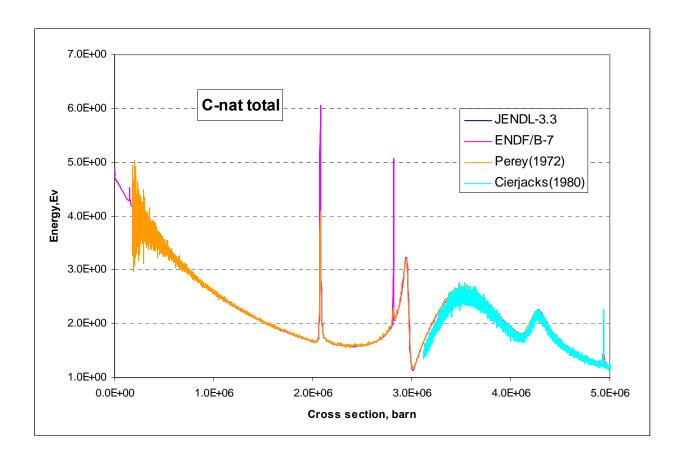


Рисунок 1. Полное сечение C-nat до 5 МэВ.

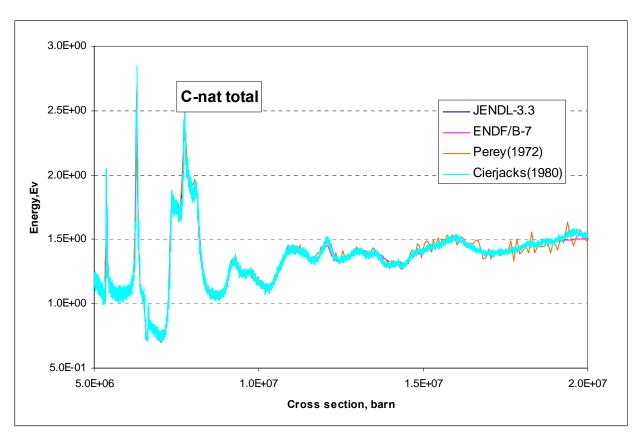


Рисунок 2. Полное сечение C-nat от 5 до 20 МэВ.

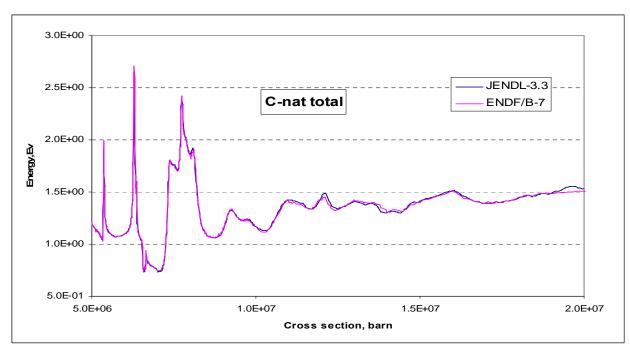


Рисунок 3. Полное сечение C-nat от 5 до 20 МэВ.

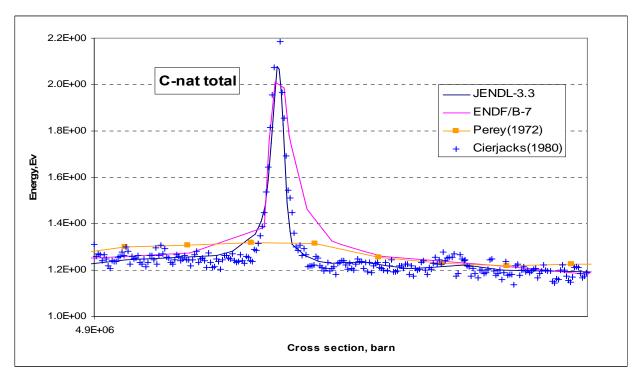


Рисунок 4. Полное сечение C-nat от 4.9 до 5 МэВ.

Результаты измерений Абфальтерера, появившиеся после выполнения оценок, отлично с ними согласуются (рис.5). Наблюдается, правда, огромные расхождения с данными Моксона (1990), которые настолько расходятся со всеми предыдущими и последующими (см. рис.2с), что их невозможно принимать во внимание: они очевидно ошибочны.

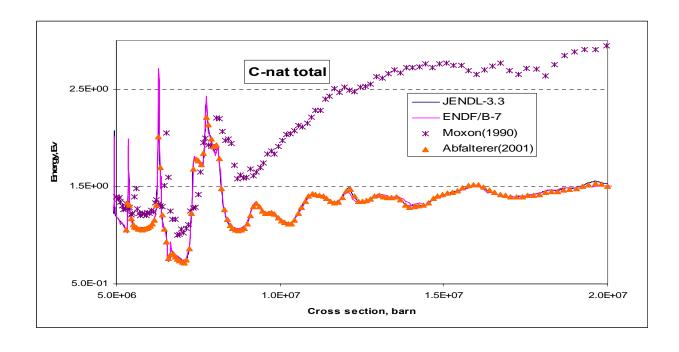


Рисунок 5. Полное сечение C-nat от 5 до 20 МэВ.

3.2. Сечение упругого рассеяния(МТ=2)

Ниже порога неупругого рассеяния отличия сечения рассеяния от полного сечения отличаются только вкладом радиационного захвата в последнее. Даже в тепловой области этот вклад (3.54 миллибарна) не намного превышает погрешность, с которой известно сечение рассеяния (2 миллибарна). Понятно, что в области ниже порога оцененные сечения упругого рассеяния совпадают столь же хорошо, как и оценки полного сечения.

Упругое рассеяние на углероде при энергиях ниже 2 МэВ рекомендуется к использованию как один из стандартов при измерениях нейтронных сечений. В этой области сечения, принятые в рассматриваемых оценках в точности соответствуют рекомендациям Международной группы по нейтронным стандартам² Видимые расхождения в оценках проявляются только с 10 MeV (рис.6). Приведенные на этом рисунке экспериментальные данные, не позволяют отдать преимущество какой-либо из оценок.

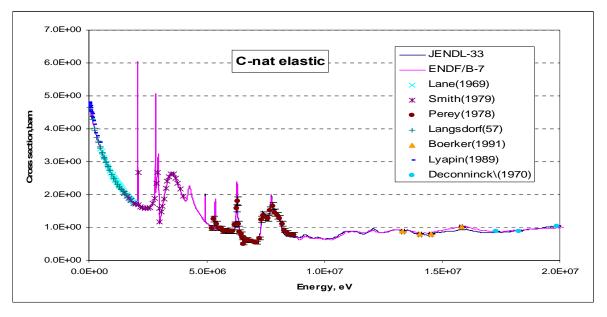


Рис.ба. Сечение упругого рассеяния на С-пат до 20 МэВ.

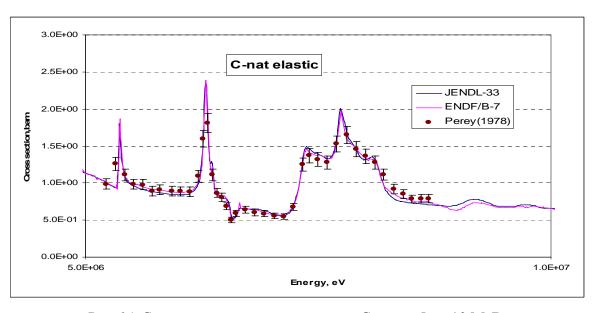


Рис. 6б. Сечение упругого рассеяния на C-nat от 5 до 10 МэВ.

² Nuclear Standards for Nuclear Measurements. NEANDC-311"U", 1992. p. 34.

3.3. Сечение неупругого рассеяния(МТ=4)

Неупругое рассеяние описывается в библиотеках JENDL3.3 и ENDF/B-7 различным количеством уровней. В таблице 2 приведены энергии уровней в библиотеках.

N	JENDL3.3	ENDF/B-6	N	JENDL3.3	ENDF/B-6
51	4.439	4.439	63	12.000	
52	7.500	7.653	64	12.500	
53	7.650	9.638	65	13.000	
54	8.000	10.800	66	13.500	
55	8.500	11.800	67	14.000	
56	9.000	12.700	68	14.500	
57	9.500	13.350	69	15.000	
58	9.640	14.080	70	15.500	
59	10.000	15.080	71	16.000	
60	10.500	16.080	72	16.500	
61	11.000	17.080	73	17.000	
62	11.500	18.080	74	17.500	
			75	18.000	
			91	7.275	7.275

Таблица 2-Уровни неупругого рассеяния для C-nat, MэB.

При энергии возбуждения выше 7.2748МэВ ядро углерода становится неустойчивым по отношению к распаду на три альфа-частицы. Поэтому неупругое рассеяние на уровнях, лежащих выше этой энергии, является по существу реакцией (n,n'3α). Известны характеристики двух таких уровней – с энергиями 7.653 МэВ и 9.638 МэВ. Как видно из приводимой схемы, при расчете сечений неупругого рассеяния и в той и в другой оценке были введены фиктивные псевдоуровни. Их назначение – частично сократить неточности в описании спектров неупругого рассеяния моделью испарения, используемой для описания спектра неупругого рассеяния с возбуждением дискретных уровней. То, что число этих уровней в японской оценке больше, чем в американской, отнюдь не означает большую ее реалистичность.

Что касается неупругого рассеяния на первом уровне, то обе сравниваемые оценки опирались на экспериментальные данные, однако на данные разных работ. Результаты этих работ в большинстве своем не опубликованы, а опубликованные недоступны через базу данных EXFOR. Из рис. 7 видно, что эксперименты, на которых основана оценка ENDF/B-VII, отличались более высоким разрешением. Что касается неупругого рассеяния при энергиях выше порога второго уровня, то в американской оценке также использовались результаты целого ряда экспериментальных работ, не содержащихся в базе данных EXFOR, тогда как в JENDL-3.3 ссылок на экспериментальные работы, использовавшиеся при оценке сечений неупругого рассеяния быстрых нейтронов, не содержится. Исходя из изложенного оценка сечений неупругого рассеяния, включенная в ENDF/B-VII, представляется предпочтительней.

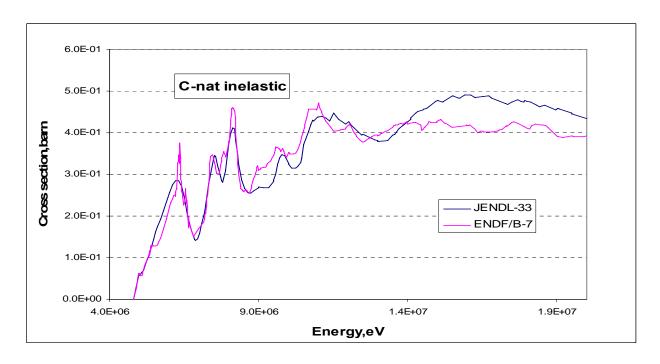


Рисунок 7. Сечение неупругого рассеяния на C-nat

3.4. Сечение реакции(n,np) (МТ=28)

Сечение этой реакции в оценке JENDL-3.3 не определяется. В описании ENDF/B-7 сказано, что эта оценка эмпирическая. В EXFORe есть только одна работа P.Dimbylow(1980) для C-12, начиная с 20 MeV до 60 MeV. На рис. приводятся эти данные в двух точках — 20 и 22 MeV. Видно, что при 20 MeV экспериментальное сечение в 2 раза ниже. Сечение реакции (n,np) приводится также в библиотеке EAF-99 (оценка из ADL-3). Согласно этой оценке сечение при 20 МэВ превышает 81 миллибарн. Таким образом, оценка ENDF/B-VII все же ближе к единственному эксперименту, и тем предпочтительнее.

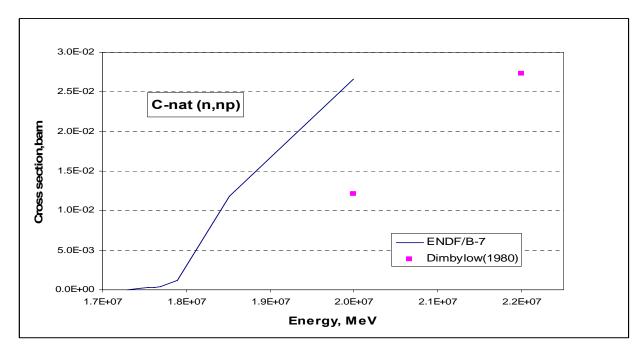


Рисунок 8. Сечение реакции (n,np) на C-nat

3.7. Сечение реакции(n,γ) (МТ=102)

В ENDF/В-7 сечение радиационного захвата оценивалось до 1 MeV, как 1/v с тепловым сечением 3.36 mb, а выше использовались экспериментальные данные Cook(1957)(данные в EXFOR отсутствуют).

В JENDL3.3 сечение радиационного захвата до 100 keV представлено как 1/v с тепловым сечением 3.53 миллибарна, далее до 5 MeV – захват s- и р-волны с учетом данных Igashira(1993)(нет в EXFOR). Выше 5 MeV - экспериментальные данные Cook(1957).

На каком основании тепловое сечение захвата было принято в ENDF/B-VII равным 3.36 миллибарн, неясно. Последняя оценка Мухабхаба³ совпадает с предыдущей и дает 3.53 ± 0.07 миллибарн в точном соответствии с экспериментом Джарни⁴, отличающемся от предыдущих существенным повышением точности. Оценка сечения радиационного захвата в JENDL-3.3 представляется более обоснованной.

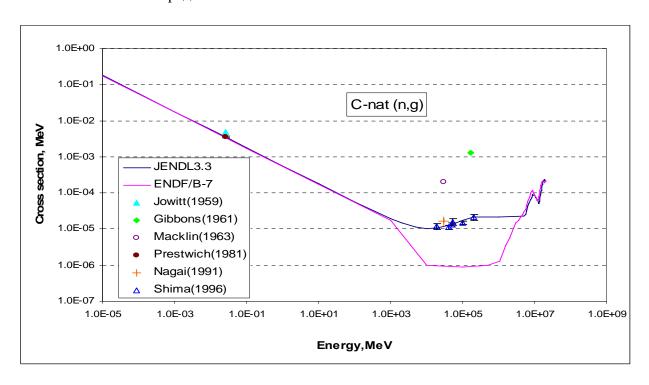


Рисунок 9. Сечение реакции (n,γ) на C-nat

3.5. Сечение реакции(n,p) (МТ=103)

И в ENDF/B-7 и в JENDL3.3 оценки сечений реакции (n,p) строились на экспериментальных данных Rimmer(1968) для C-12, хотя как видно из рисунка 10, JENDL3.3 более точно повторяет эксперимент. В EXFORe содержатся также данные Ablesimov(1972) в области порога реакции, данные которой существенно выше результатов обеих оценок. Однако возрастание сечения до миллибарна при энергии 14.1 МэВ столь близкой к порогу (13.65 МэВ) представляется сомнительным и не может служить основанием для недоверия к оценке.

³ S.F.Mughabghab, Thermal Neutron Capture Cross Sections, Resonsnce Integrals and G-Factors. INDC(IND)-25/GV. IAEA, Vienna, Feb. 2003.

⁴ E.T.Jurney et al. Phys.Rev/C, 25, p. 2810, 1982. EXFOR № 12744.

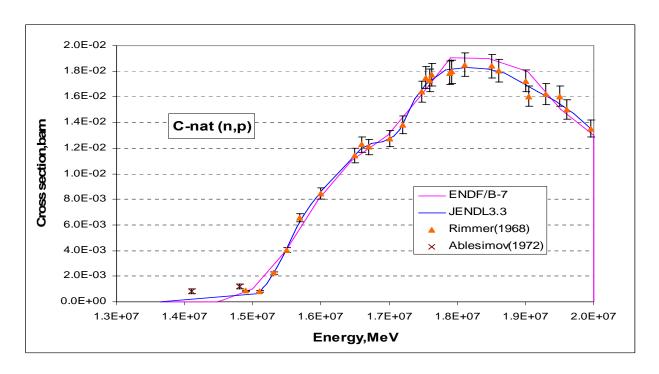


Рисунок 8. Сечение реакции (n,p) на C-nat

3.6. Сечение реакции(n,d) (MT=104)

В EXFOR экспериментальных данных нет ни для C-nat, ни для C-12 до 20 MeV. Оценка сечения в ENDF/B-7, как указано в описании, основывалась на данных Ames(1957) для обратной реакции. Она совпадает с данными, содержащимися в EAF-99. В JENDL3.3 использовали результаты модельных расчетов. На рисунке видно, что от порога оценки сильно расходятся. Оценка ENDF/B-VII представляется более надежной.

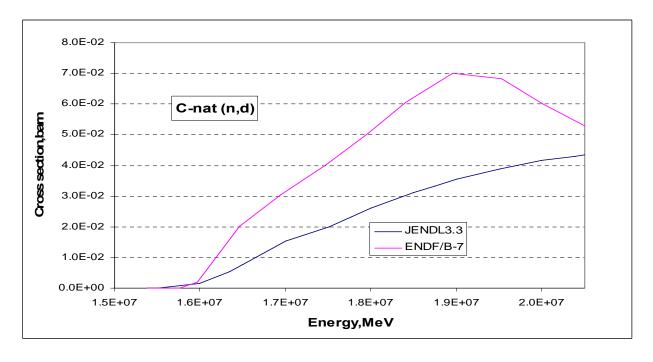


Рисунок 9. Сечение реакции (n,d) на C-nat

3.7. Сечение реакции(n,α) (МТ=107)

Экспериментальных данных для реакции (n,α) на C-nat в EXFORe нет. В ENDF/B-7 оценка основывалась на 6 экспериментах 60-70-х годов, результаты которых отсутствуют в EXFORe. JENDL3.3 также ссылается на ряд экспериментов, три из которых представлены на рисунке(Stevens, Chatterjee, Brede). Все экспериментальные данные приведены для изотопа C-12.

Оценка ENDF/B-7 прекрасно согласуется с набором экспериментальных данных, не считая самый поздний эксперимент Brede(1991), результаты которого противоречат всем остальным.

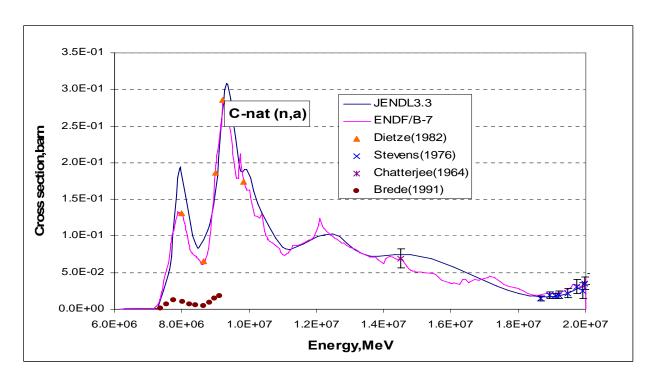


Рисунок 10. Сечение реакции (n, α) на C-nat

4. Угловые распределения (МТ=4)

4.1. Упругое рассеяние

Поскольку упругое рассеяние на углероде используется в качестве стандарта при измерениях нейтронных данных при энергиях ниже 2 МэВ, оценка угловых распределений находилась (и находится) под международным контролем. Понятно, что угловые распределения упругого рассеяния в обеих оценках в этой области энергий совпадают с рекомендациями Международной рабочей группы по нейтронным стандартам². Оцененные данные совпадают друг с другом и при более высоких энергиях вплоть до 20 МэВ и, таким образом, вопрос о выборе оцененных данных не стоит. На рис. 11(а-г) приведены типичные примеры сравнения оцененных и экспериментальных данных при энергиях выше 2 МэВ.

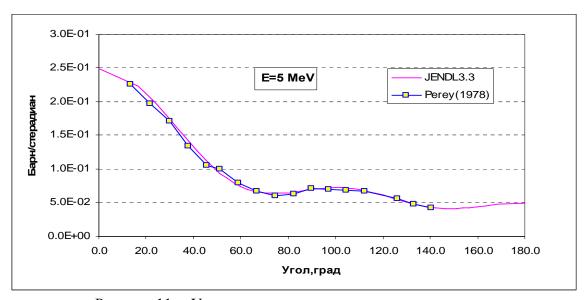


Рисунок 11.а. Угловое распределение упругого рассеяния.

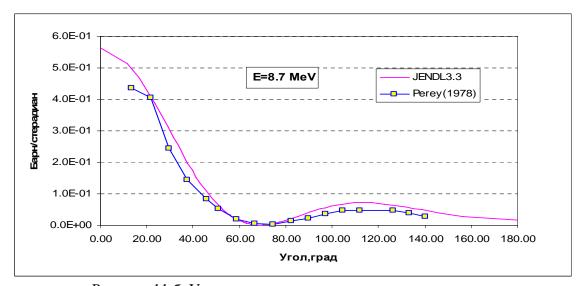


Рисунок 11.б. Угловые распределения упругого рассеяния.

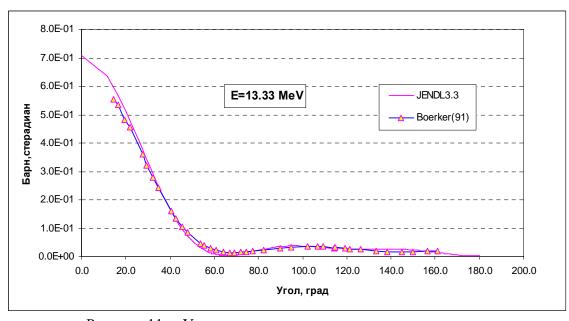


Рисунок 11.в. Угловые распределения упругого рассеяния.

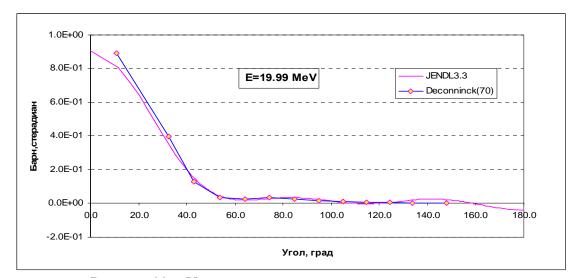


Рисунок 11.г. Угловые распределения упругого рассеяния.

4.2. Неупругое рассеяние.

Неупругое рассеяние, как описывалось выше, в библиотеках представлено поразному. Естественно, различаются и угловые распределения. Сходство лишь в том, что для неупругого рассеяния на реальных уровнях в обоих оценках даются угловые распределения, оцененные на основе немногих экспериментальных данных, а для рассеяния на фиктивных уровнях и на континууме – изотропные. Коль скоро решено принять в РОСФОНД оцененные данные по сечениям неупругого рассеяния из ENDF/B-VII, естественно принять и угловые распределения из этой библиотеки. Заметим, что экспериментальные данные, доступные через EXFOR⁵, не позволяют отдать предпочтение какой-либо из оценок. (см., например, рис. 12а, б).

Угловые распределения на уровнях заданы изотропными в системе центра инерции, а при рассеянии на континууме — почему-то изотропными в лабораторной системе координат. С последним трудно согласиться и в файле РОСФОНД неупругое рассеяние на континууме изотропно в лабораторной системе координат.

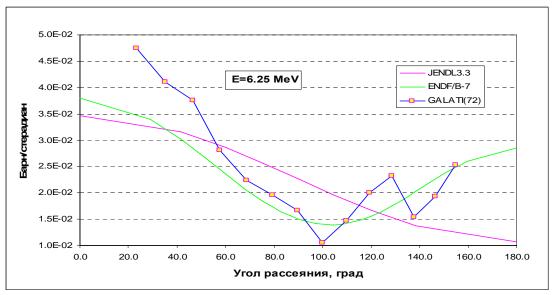


Рисунок 12а. Угловые распределения неупругого рассеяния.

_

⁵ W.Galati etal,PR/C,5,1508,197205 EXFOR №10174.

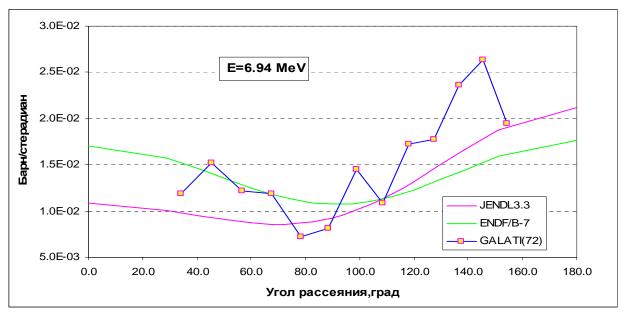


Рисунок .12б. Угловые распределения неупругого рассеяния.

4.3. Угловые распределения нейтронов из реакции (n,n'p)

Заданы, естественно, только в ENDF/B-VII, где они приняты изотропными в лабораторной системе координат. В РОСФОНДЕ они приняты изотропными в системе центра инерции.

5. Энергетические распределения (МТ=5)

В ENDF/В-7 энергетическое распределение задается для реакций (n,np) МТ=28 и для континуума МТ=91. Энергетический спектр в обеих реакциях представлен спектром испарения в двух точках(на пороге и при 20 MeV).

В JENDL3.3 для MT=91 задан энергетический спектр в форме таблично-заданной функции.

В РОСФОНД приняты спектры из ENDF/B-VII.

6. Фотонные данные

В обеих библиотеках принято, что фотоны при взаимодействии нейтронов с ядрами углерода могут образовываться только при радиационном захвате и при неупругом рассеянии на первом уровне.

При неупругом рассеянии на более высоколежащих уровнях, энергия возбуждения, как отмечалось, снимается путем развала ядра на три альфа-частицы.

В результате реакции (n,n'p) бор-11 в возбужденном состоянии может образоваться только при энергии налетающего нейтрона большей 19.42 МэВ, так что даже при энергии 20 МэВ выход фотонов от этой реакции пренебрежимо мал.

В результате реакции (n,d) возбужденные состояния бора-11 могут образовываться при энергиях выше 17 МэВ, т.о. образование фотонов при этой реакции в рассматриваемом энергетическом диапазоне возможно. Сечение этой реакции при 20 МэВ составляет около 10% от полного сечения неупругих взаимодействий и более половины сечения неупругого рассеяния на первом уровне — основной реакции образования фотонов при этой энергии. Поэтому пренебрежение вкладом реакции (n,d) в образование фотонов не представляется оправданным.

В реакции (n,p) образуется радиоактивный бор-12, который при энергиях, близких к 20 МэВ также может быть образован в возбужденных состояниях и вести к образованию фотонов. Правда, сечение этой реакции в несколько раз меньше, чем сечение реакции (n,d).

Наконец, в реакции (n,α) , Be9 который в возбужденном состоянии распадается на нейтрон и две альфа частицы, образуя, таким образом, один из каналов реакции $(n,n'3\alpha)$, непорждающей фотонов.

Отмечая целесообразность включения в файл оцененных данных об образовании фотонов в реакциях (n,d) и (n,p), мы не нашли возможности включить эти данные в РОСФОНД из-за отсутствия в настоящее время готовых оценок.

Спектр фотонов неупругого рассеяния (МТ=51) представлен в файле МF=12 одним переходом в основное состояние с множественностью 1. Угловые распределения этих фотонов в обоих оценках основано на одних и тех же экспериментальных данных Моргана(1972) и в точности совпадают.

Спектр фотонов радиационного захвата в ENDF/B-VII описан тремя линиями с энергиями 4.95, 3.68 и 1.26 МэВ. В JENDL-3.3 задан непрерывный спектр.

В РОСФОНД приняты данные об образовании фотонов в нейтронных реакциях на углероде из ENDF/B-VII.

7. Погрешности

Файл с погрешностями MF=33 для всех реакций присутствует только в библиотеке ENDF/B-7. В РОСФОНД данные о погрешностях не включаются, поскольку согласованного набора погрешностей для основных материалов не имеется, а разрозненные оценки включать в национальную библиотеку представляется нецелесообразным. Включение этих данных — дело будущего.

8. Перечень цитированных экспериментальных работ

8.1. Полное сечение

Указатель	1-й автор	Ссылка	№ EXFOR
Perey(72)	F.G.Perey	R,ORNL-4823,197212	7212
Cierjacks(80)	S.Cierjacks	J,NIM,169,185,8004	8004
Moxon(90)	M.C.Moxon	C,90MARSEI,1,(III),32	9004
Abfalterer(00)	W.P.Abfalterer	J,PR/C,62,064312,20001	20001

8.2. Сечения реакций упругого рассеяния

Указатель	1-й автор	Ссылка	№ EXFOR
Langsdorf(57)	A.Langsdorf	J,PR,107,1077	57
Lane(69)	R.O.Lane	J,PR,188,1618	196912
Perey(78)	F.G.Perey	P,NCSAC-42,190	7811
Smith(79)	A.Smith	J,NSE,70,281	197906
Lyapin(89)	D.I.Lyapin	R,JINR-P3-89-408	19890615
Deconninck(70)	G.Deconninck	J,PR/C,1,1326	7004
Boerker(91)	G.Boerker	C,91JUELIC,,317	199105

8.3.Сечения реакций (п, ү)

Указатель	1-й автор	Ссылка	№ EXFOR
Jowitt(59)	D.Jowitt	J,PNE,3,242	1959
Gibbons(61)	J.H.Gibbons	J,PR,122,182,61	6101
Macklin(63)	R.L.Macklin	J,PR,129,2695	63
Prestwich(81)	W.V.Prestwich	J,NSE,78,182	8601

8.4.Сечение реакции (n,p)

Указатель	1-й автор	Ссылка	№ EXFOR
Rimmer(68)	E.M.Rimmer	J,NP/A,108,567	6802
Ablesimov(72)	V.E.Ablesimov	C,71KIEV,1,173	72

8.5.Сечение реакции (n,α)

Указатель 1-й автор Ссы		Ссылка	№ EXFOR
Chatterjee(64)	M.L.Chatterjee	J,NP,51,583,64	6401
Stevens(76)	A.P.Stevens	R,INIS-MF-3596	7610
Dietze(82)	G.Dietze	C,82ANTWER,930	8209
Brede(91)	H.J.Brede	J,NSE,107,22,91	9101

9. Заключение

9.1 Вывод:

В РОСФОНД рекомендуется оценка нейтронных данных для C-nat из библиотеки ENDF/B-VII.

9.2 Авторы обоснования оцененных данных:

Забродская С.В., Николаев М.Н..