

Российский Федеральный Ядерный Центр Всероссийский научно-исследовательский институт технической физики имени академика Е. И. Забабахина (ФГУП «РФЯЦ – ВНИИТФ им. академ. Е. И. Забабахина»)

ЭКСПЕРИМЕНТЫ ПО ИССЛЕДОВАНИЮ ПРОХОЖДЕНИЯ НЕЙТРОНОВ ЧЕРЕЗ СЛОИ ГИДРИДА ЛИТИЯ-7 В УРАНОВОЙ РАЗМНОЖАЮЩЕЙ СИСТЕМЕ С ПРИМЕНЕНИЕМ МЕТОДА НЕЙТРОННО-АКТИВАЦИОННОГО АНАЛИЗА

С.А. Андреев, С.С. Бесов, А.А. Вайвод,

В.И. Литвин, <u>А.А. Юдов</u>

Описание размножающей системы

Активная зона состоит из 11 дисков из высокообогащенного урана, сверху которых в виде торцевых отражателей размещались диски гидрида лития-7 суммарной толщиной 12 см

РФЯЦ-ВНИИТФ

Для регулировки реактивности размножающая система (PC) разделялась на две части.

Диаметры всех дисков около 20 см, толщина около 1 см.

Нейтронно-активационные детекторы размещались в пазах алюминиевых дисков в фиксированных позициях между дисками из гидрида лития на расстоянии соответственно 0; 0,5; 1; 1,5; 2, 3, 4, 6, 8, 10, 12 см от поверхности уранового диска ВЧ

Описание размножающей системы

Внешний вид РС

Внешний вид дисков из гидрида лития-7 и нейтронно- активационных детекторов (ДНА) ДНА - металлические диски, изготовленные из особо чистого материала. Диаметр дисков составляет 20 мм, толщина - 1 или 2 мм 3

1 Проводится ручная сборка частей РС, в которой все детали из делящегося материала заменяются их инертными макетами той же формы. Определяется скорость счета нейтронов D₀, обусловленная только нейтронами Pu-Be источника.

2 Проводится ручная сборка двух частей PC с делящимися материалами. Осуществляется пошаговое дистанционное сближение частей системы.

3 Для серии значений зазора H определяется скорость счета D нейтронов, выходящих из PC, и вычисляется коэффициент умножения нейтронов Q по отношению к используемому источнику $Q = D/D_0$.

Состояние запаздывающей критичности (величина критического зазора $H\kappa p$) определяется путем экстраполяции в ноль зависимости обратного коэффициента умножения $Q^{-1} = D_0/D$ от зазора Н.

4 Определяется зависимость постоянной спада мгновенных нейтронов от величины зазора между частями РС α(*H*). Проводится вычисление угла наклона этой зависимости *д*α/*дH* для PC, находящейся вблизи критического на запаздывающих нейтронах состояния.

5 Определялся критический зазор на мгновенных нейтронах и коэффициент $\partial \rho / \partial H$, характеризующий удельный «вес» перемещения регулирующего элемента (НЧРС)

$$\frac{\partial \rho}{\partial H} = \frac{\partial \alpha}{\partial H} \frac{1}{\alpha_{DC}} \left[\frac{\beta}{_{\text{MM}}} \right]$$
, где α_{DC} – постоянная Росси

6 По соотношению между периодом и реактивностью для ²³⁵U рассчитываются величины перехода в надкритическое состояние Δh, соответствующие различным периодам разгона.

7 Осуществляется вывод PC на заданную мощность для облучения активационных детекторов.

Метод заключается в облучении ДНА в нейтронном поле исследовательской установки, измерении активности образовавшегося радионуклида, расчёте параметров нейтронного поля с использованием аттестованных характеристик детектора и справочных данных о ядернофизических константах радионуклидов и нейтронных реакциях.

Экспериментально определяемой величиной в данном методе является число взаимодействий (реакций), нормированное на одно ядро изотопа-мишени, - активационный интеграл *Q* (АИ).

$$Q = \int_0^\infty \Phi(E) \cdot \sigma(E) dE,$$

где Φ(E) - энергетическое распределение флюенса нейтронов, σ(E) - микроскопическое сечение реакции.

Проводилось облучение активационных детекторов: из никеля, индия, алюминия, титана и меди.

Облучение проводилось на мощности 24-31 Вт в течение 60-80 минут.

Для измерения АИ облученных ДНА использовались методы гаммаспектрометрии. Ядерно-физические и технические характеристики ДНА

№ п/п	Реакция активации	Содерж ание изотопа , %	ρ, г/см ³	T _{1/2}	Е _γ , МэВ (выход на 100 распадов)	Порог реакции, МэВ	Размеры , мм	Масса, мг	Толщин а, г/см²
1	⁵⁸ Ni(n,p) ⁵⁸ Co	68,27	8,91	70,78 д	0,81(99)	2,5	Ø20x1	2700	0,86
2	¹¹⁵ ln(n,n') ^{115m} ln	95,72	7,31	4,49 ч	0,336(47)	1,15	Ø20x1	2200	0,70
3	¹¹³ ln(n,γ) ^{114m} ln	4,28	7,31	49,51д	0,190(17)	теплов.	Ø20x1	2200	0,70
4	⁴⁷ Ti(n,p) ⁴⁷ Sc	7,30	4,51	3,35 д	0,159(73)	2,2	Ø20x1	1350	0,43
5	27 Al(n, α) ²⁴ Na	~100	2,70	15,02 ч	1,369(100)	7,2	Ø20x2	1600	0,51
6	⁶³ Cu(n, γ) ⁶⁴ Cu	69,10	8,96	12,70 ч	0,511(38)	теплов.	Ø20x1	2200	0,70

Погрешность абсолютных измерений составляла от 4% до 8% (1 σ). Погрешность относительных измерений составила от 0,3% до 2,7% (1 σ).

Типы использованных детекторов, длительность облучения детекторов ($T_{\text{обл.}}$), расчётные значения мощности работы установки в каждом опыте, показания ДНА-мониторов ($Q_{\text{м}}$)

N⁰	ДНА	Т _{обл} , мин	W, Bτ (δ=3%, P=0,95)	Q _{м′} реакций∕ядро
1	Ni	70	24,1	1,84.10-12
2	In	60	28,5	1,86.10-12
3	Al	80	30,6	2,67.10-12
4	Ti+Cu	70	28,1	2,14.10-12

1 Определялось число реакций в никелевом ДНА-мониторе, который устанавливался на центр верхнего диска нижней части РС.

2 Число реакций в ДНА-мониторе на 1 деление в АЗ определялось расчётным путём по программе ПРИЗМА.

3 По полученным данным вычислялось общее число делений в каждом пуске реактора и число делений в единицу времени при известном времени облучения.

Результаты измерения активационных интегралов всех детекторов, приведенные к показаниям соответствующих ДНА-мониторов из никеля

Н, мм	(Q/Q _M) _{Ni}	δ, % (1σ)	$(Q/Q_{M})_{In n\gamma}$	δ, % (1σ)	(Q/Q _M) _{Cu}	δ, % (1σ)	(Q/Q _M) _{In nn'}	δ, % (1σ)	(Q/Q _M) _{Ti}	δ, % (1σ)	$(Q/Q_{M})_{Al}$	δ, % (1σ)
0	5,51·10 ⁻¹	0,6	6,90·10 ⁰	0,4	1,39·10 ⁰	0,6	1,13·10 ⁰	0,6	9,21·10 ⁻²	0,6	3,81·10 ⁻³	0,9
5	3,93·10 ⁻¹	1,1	9,09·10 ⁰	0,9	1,64·10 ⁰	0,4	8,16·10 ⁻¹	1,0	6,50·10 ⁻²	0,8	2,76·10 ⁻³	0,8
10	3,02·10 ⁻¹	0,7	9,89·10 ⁰	0,6	1,71·10 ⁰	0,4	6,38·10 ⁻¹	1,1	4,97·10 ⁻²	0,8	2,21·10 ⁻³	1,0
15	2,39·10 ⁻¹	1,5	1,07·10 ¹	0,8	1,77·10 ⁰	1,0	5,14·10 ⁻¹	0,3	3,92·10 ⁻²	0,8	1,79·10 ⁻³	1,0
20	1,89·10 ⁻¹	0,9	1,10·10 ¹	0,6	1,67·10 ⁰	0,4	4,14·10 ⁻¹	0,9	3,12·10 ⁻²	0,7	1,37·10 ⁻³	0,9
30	1,31·10 ⁻¹	1,5	1,07·10 ¹	0,8	1,52·10 ⁰	0,5	2,85·10 ⁻¹	0,5	2,14·10 ⁻²	0,9	9,92·10 ⁻⁴	1,1
40	9,37·10 ⁻²	0,9	9,53·10 ⁰	0,9	1,29·10 ⁰	0,3	2,03·10 ⁻¹	0,7	1,54·10 ⁻²	1,0	6,97·10 ⁻⁴	1,1
60	5,03·10 ⁻²	0,8	6,78·10 ⁰	0,9	8,51·10 ⁻¹	0,9	1,08.10-1	1,0	8,11·10 ⁻³	0,9	4,01.10-4	1,0
80	2,79·10 ⁻²	0,8	4,27·10 ⁰	0,7	5,07·10 ⁻¹	1,0	5,95·10 ⁻²	0,5	4,53·10 ⁻³	1,0	2,48·10 ⁻⁴	1,9
100	1,60·10 ⁻²	0,9	2,26·10 ⁰	1,0	2,79·10 ⁻¹	1,2	3,33·10 ⁻²	1,1	2,57·10 ⁻³	2,1	1,47·10 ⁻⁴	2,4
120	9.33·10 ⁻³	0,9	7,82·10 ⁻¹	1,2	1,01.10-1	2,2	1,85·10 ⁻²	2,0	1,46·10 ⁻³	2,7	9,31·10 ⁻⁵	1,8

H=0 - место размещения ДНА между верхней частью сборки и нижним диском из гидрида лития

Спектральные индексы
 пяти реакций - отношение приведенных к
 показаниям мониторов значений АИ для каждого ДНА к приведенным
 значениям АИ для никеля

Н, мм	$\eta_{In n\gamma}$	δη _{In nγ} , % (1σ)	η _{Cu}	δη _{Cu′} % (1σ)	$\eta_{\ln nn'}$	δη _{In nn'} , % (1σ)	η_{Ti}	δη _{Ti} , % (1σ)	$\eta_{ m Al}$	δη _{Al} , % (1σ)
0	12,5	0,7	2,50	0,8	2,00	0,8	0,166	0,8	6,87·10 ⁻³	1,1
5	23,0	1,4	4,16	1,2	2,06	1,5	0,165	1,4	6,99·10 ⁻³	1,4
10	32,6	0,9	5,64	0,8	2,07	1,3	0,164	1,1	7,29·10 ⁻³	1,2
15	44,4	1,7	7,17	1,8	2,10	1,5	0,163	1,7	7,42·10 ⁻³	1,8
20	57,7	1,1	8,76	1,0	2,14	1,3	0,164	1,1	7,22 ·10 ⁻³	1,3
30	81,3	1,7	11,6	1,6	2,14	1,6	0,163	1,7	7,53·10 ⁻³	1,8
40	101	1,3	13,7	1,0	2,11	1,2	0,163	1,3	7,40·10 ⁻³	1,4
60	134	1,2	16,8	1,2	2,08	1,1	0,160	1,2	7,92·10 ⁻³	1,3
80	152	1,1	18,1	1,3	2,05	0,9	0,161	1,3	8,83·10 ⁻³	2,1
100	140	1,3	17,4	1,5	1,99	1,4	0,160	2,3	9,16·10 ⁻³	2,6
120	83,3	1,5	10,8	1,4	1,88	2,2	0,156	2,8	9,92·10 ⁻³	2,0

Результаты измерений

Зависимость спектрального индекса от положения ДНА в сборке

⁴⁷*Ti*(*n*,*p*)⁴⁷*Sc* Порог реакции 2,2 МэВ

¹¹⁵In(n,n')^{115m}In Порог реакции 1,15 МэВ

²⁷*Al(n,*α)²⁴*Na* Порог реакции 7,2 МэВ

Результаты измерений

Зависимость спектрального индекса от положения ДНА в сборке

⁶³*Си*(*n*, γ)⁶⁴*Си* Порог реакции – тепловые

 $^{113}In(n,\gamma)^{114m}In$ Порог реакции - тепловые

1 Представлены результаты исследований по прохождению нейтронов делительного спектра через слои гидрида лития-7 общей толщиной до ~12 см.

2 Использованы ДНА пяти типов, обеспечивающих измерения чисел следующих реакций в диапазоне энергий от тепловых до быстрых нейтронов:

 $-{}^{58}Ni(n,p){}^{58}Co; {}^{115}In(n,n'){}^{115m}In; {}^{47}Ti(n,p){}^{47}Sc; {}^{27}Al(n,\alpha){}^{25}Na; -{}^{113}In(n,\gamma){}^{114m}In; {}^{63}Cu(n,\gamma){}^{64}Cu.$

3 Приведены зависимости нормированных чисел реакций детекторов, установленных между слоями отражателя из гидрида лития-7 на различных расстояниях от поверхности активной зоны PC.

4Нормированные значения чисел реакций приведены с относительной погрешностью от 0,3 % до 2,7 % (1σ).

5 В графическом виде и табличной форме приведены зависимости спектральных индексов от расстояния между верхней поверхностью АЗ РС и положением детектора.

6 Результаты экспериментов предполагается использовать для верификации расчетных кодов и библиотек нейтронных констант.

Спасибо за внимание!