Метод поверхностных гармоник для нейтроннофизического расчета трехмерного гетерогенного реактора с несимметричными ячейками

А.В. Ельшин^{1,2}, П.В. Агалина²

¹ФГУП «НИТИ им. А.П. Александрова»

²Институт ядерной энергетики (филиал) ФБАОУ ВО «Санкт-Петербургского Политехнического университета Петра Великого» в г. Сосновый Бор 188540, Ленинградская обл., г. Сосновый Бор, ул. Солнечная, 41

План

- Немного о МПГ, как методе решения уравнения переноса нейтронов;
- Получение уравнений для трехмерного гетерогенного реактора с несимметричными ячейками;
- Простая численная демонстрация применения полученных уравнений.

Исходные уравнения

$$\hat{L}\Phi(\mathbf{r}, E, \mathbf{\Omega}) + \frac{1}{k_{e\!f\!f}} \hat{K}_f \Phi(\mathbf{r}, E, \mathbf{\Omega}) = 0$$

$$\hat{L} \Phi(\mathbf{r}, E, \mathbf{\Omega}) = -\vec{\Omega} \nabla \Phi(\mathbf{r}, E, \mathbf{\Omega}) - \Sigma_t(\mathbf{r}, E) \Phi(\mathbf{r}, E, \mathbf{\Omega}) - +\int \Sigma_s(\mathbf{r}, E', \mathbf{\Omega}' \to E, \vec{\Omega}) \Phi(\mathbf{r}, E', \mathbf{\Omega}') dE' d\Omega'$$

$$\hat{K}_f \Phi \ (\mathbf{r}, E, \mathbf{\Omega}) = \frac{1}{4\pi} \int dE' \int d\Omega' \chi(\mathbf{r}, E, E') v_f(\mathbf{r}, E') \Sigma_f(\mathbf{r}, E') \Phi(\mathbf{r}, E', \mathbf{\Omega}')$$

$$\hat{L}^{+}\Phi^{+}(\mathbf{r}, E, \mathbf{\Omega}) + \frac{1}{k_{eff}}\hat{K}_{f}^{+}\Phi^{+}(\mathbf{r}, E, \mathbf{\Omega}) = 0$$

Этапы получения конечно-разностных уравнений

Этап 1.

Реактор разбивается на элементарные ячейки, представляющие собой квадратные, шестигранные, или треугольные призмы.

Элементарная ячейка реактора и нумерация граней в ячейке i, j, k Этап 2.

В МПГ решение уравнения в каждой ячейке ищется в виде линейной комбинации некоторых пробных функций

$$\Phi^{k}(\mathbf{r}, E, \mathbf{\Omega}) = \sum_{l} \sum_{n=1}^{N_{k}} \sum_{g=1}^{G} A_{ngl}^{k} \Psi_{ngl}^{k}(\mathbf{r}, E, \mathbf{\Omega})$$

$$\Phi^{k+}(\mathbf{r}, E, \mathbf{\Omega}) = \sum_{l} \sum_{n=1}^{N_k} \sum_{g=1}^{G} A_{ngl}^{k+} \Psi_{ngl}^{k+}(\mathbf{r}, E, \mathbf{\Omega})$$

Внутри ячеек пробные функции удовлетворяют уравнению переноса нейтронов

Этап 3.

Получение уравнений, связывающих амплитуды, относящиеся к соседним ячейкам

Выражение для невязки уравнения

 $\delta L\Phi = 0, \quad <\Phi^{+}\delta L\Phi >= 0; \quad \delta L^{+}\Phi^{+} = 0, \quad <(\delta L^{+}\Phi^{+})\Phi >= 0$

$$\int_{4\pi} d\Omega \int_{0}^{\infty} dE \int_{\Gamma} dS(\mathbf{\Omega}, \mathbf{n}) \frac{\Phi_{+}^{+}(\mathbf{r}_{s}, E, \mathbf{\Omega}) + \Phi_{-}^{+}(\mathbf{r}_{s}, E, \mathbf{\Omega})}{2} \left[\Phi_{+}(\mathbf{r}_{s}, E, \mathbf{\Omega}) - \Phi_{-}(\mathbf{r}_{s}, E, \mathbf{\Omega})\right] = 0$$

$$\sum_{k=1}^{K} \int_{0}^{\infty} dE \int_{\Gamma_{k}} dS \int_{4\pi} d\Omega(\Omega, \mathbf{n}) \Phi_{N-}^{k+}(\mathbf{r}_{s}, E, \Omega) [\Phi_{N+}^{k}(\mathbf{r}_{s}, E, \Omega) - \Phi_{N-}^{k}(\mathbf{r}_{s}, E, \Omega)] = 0$$

$$\sum_{k=1}^{K} \int_{0}^{\infty} dE \int_{\Gamma_{k}} dS \int_{4\pi} d\Omega(\mathbf{\Omega}, \mathbf{n}) [\Phi_{N+}^{k+}(\mathbf{r}_{s}, E, \mathbf{\Omega}) - \Phi_{N-}^{k+}(\mathbf{r}_{s}, E, \mathbf{\Omega})] \Phi_{N-}^{k}(\mathbf{r}_{s}, E, \mathbf{\Omega}) = 0$$

$$\Phi_{\pm}^{k+}(\mathbf{r}_{s}, E, \mathbf{\Omega}) = \sum_{i=0}^{\infty} \sum_{j=-i}^{i} \frac{2i+1}{2\pi(1+\delta_{j0})} \frac{(i-|j|)!}{(i+|j|)!} \Phi_{k\pm}^{(i,j)+}(\mathbf{r}_{s}, E) Y_{i}^{j}(\mathbf{\Omega})$$

Система угловых переменных на границе ячейки

х

Ο

θ

$$\int_{4\pi} Y_n^m(\Omega) Y_i^j(\Omega) d\Omega = \delta_{ni} \delta_{mj} \frac{2\pi (1+\delta_{j0})}{2n+1} \frac{(n+|m|)!}{(n-|m|)!}$$

$$\Phi_{k\pm}^{(i,j)+}(\mathbf{r}_{s},E) = \int_{4\pi} \Phi_{\pm}^{k+}(\mathbf{r}_{s},E,\mathbf{\Omega})Y_{i}^{j}(\mathbf{\Omega})d\mathbf{\Omega}$$

Выражения для невязки и уровней нейтронов

$$\sum_{k=1}^{K} \sum_{n=1}^{N_{k}} \int_{0}^{\infty} dE \int_{\Gamma_{kn}} dS \sum_{l=1,3,...}^{\infty} \sum_{m=-l}^{l} \left\{ \tilde{\Phi}_{kn-}^{(l-1,m)+}(\mathbf{r}_{s}, E) [\Phi_{kn+}^{(l,m)}(\mathbf{r}_{s}, E) - \Phi_{kn-}^{(l,m)}(\mathbf{r}_{s}, E)] + \Phi_{kn-}^{(l,m)+}(\mathbf{r}_{s}, E) [\tilde{\Phi}_{kn+}^{(l-1,m)}(\mathbf{r}_{s}, E) - \tilde{\Phi}_{kn-}^{(l-1,m)}(\mathbf{r}_{s}, E)] \right\} = 0$$

$$\tilde{\Phi}_{kn\pm}^{(l-1,m)}(\mathbf{r}_{s}, E) = \frac{2}{1+\delta_{m0}} \left[\frac{(l-|m|)!}{(l+|m|-1)!} \Phi_{kn\pm}^{(l-1,m)}(\mathbf{r}_{s}, E) + \frac{(l-|m|+1)!}{(l+|m|)!} \Phi_{kn\pm}^{(l+1,m)}(\mathbf{r}_{s}, E) \right] \right]$$

$$\tilde{\Phi}_{kn\pm}^{(l-1,m)+}(\mathbf{r}_{s},E) = \frac{2}{1+\delta_{m0}} \left[\frac{(l+|m|)!}{(l+|m|-1)!} \Phi_{kn\pm}^{(l-1,m)+}(\mathbf{r}_{s},E) + \frac{(l+|m|+1)!}{(l+|m|)!} \Phi_{kn\pm}^{(l+1,m)+}(\mathbf{r}_{s},E) \right]$$

$$\begin{split} \tilde{\Phi}_{kn\pm}^{(0,0)+}(\mathbf{r}_{s},E) &= \Phi_{kn\pm}^{(0,0)+}(\mathbf{r}_{s},E) + 2\Phi_{kn\pm}^{(2,0)+}(\mathbf{r}_{s},E) \\ \tilde{\Phi}_{kn\pm}^{(2,0)+}(\mathbf{r}_{s},E) &= 3\Phi_{kn\pm}^{(2,0)+}(\mathbf{r}_{s},E) + 4\Phi_{kn\pm}^{(4,0)+}(\mathbf{r}_{s},E) \\ \tilde{\Phi}_{kn\pm}^{(4,0)+}(\mathbf{r}_{s},E) &= 5\Phi_{kn\pm}^{(4,0)+}(\mathbf{r}_{s},E) + 6\Phi_{kn\pm}^{(6,0)+}(\mathbf{r}_{s},E) \end{split}$$

Пробные функции

$$\begin{split} \Phi^{k}(\mathbf{r}, E, \vec{\Omega}) &= \sum_{l} \sum_{n=1}^{N_{k}} \sum_{g=1}^{G} A_{ngl}^{k} \Psi_{ngl}^{k}(\mathbf{r}, E, \vec{\Omega}) \\ \Phi^{k+}(\mathbf{r}, E, \vec{\Omega}) &= \sum_{l} \sum_{n=1}^{N_{k}} \sum_{g=1}^{G} A_{ngl}^{k+} \Psi_{ngl}^{k+}(\mathbf{r}, E, \vec{\Omega}) \\ \Psi_{ngl}^{k(l')}(\mathbf{r}_{s}, E) &= \begin{cases} \theta_{ngl}^{k}(\mathbf{r}_{s}, E) \delta_{l'l}, \ l' = 1, 3, ..., \infty, \\ 0 - \varepsilon \text{ остальных группах } g' \neq g \text{ и на остальных гранях } n' \neq n \end{cases} \\ \Psi_{ngl}^{k(l')+}(\mathbf{r}_{s}, E) &= \begin{cases} -\theta_{ngl}^{k}(\mathbf{r}_{s}, E) \delta_{l'l}, \ l' = 1, 3, ..., \infty \\ 0 - \varepsilon \text{ остальных группах } g' \neq g \text{ и на остальных гранях } n' \neq n \end{cases} \end{split}$$

G линейно независимых спектров нечетных (*I=1,3,...*) моментов на *n*-й грани *k*-й ячейки

$$\int_{0}^{\infty} dE \int_{\Gamma_n} dS \theta_{ngl}^k(\mathbf{r}_s, E) = 1$$

Квазисимметричная пробная функция

Симметричное задание граничных условий (нечетных угловых моментов)

Квазиантисимметричные пробные функции

Антисимметричное задание граничных условий (нечетных угловых моментов)

Дополнительные пробные функции

Задание граничных условий (нечетных угловых моментов) для решений типа «седло»

Ячейка с "соседями" (7-ячеечный «шаблон», на котором строятся конечно-разностные уравнения)

Грань х₁

$$I^{i,j,k} + J^{i,j,k}_{x} - P^{i,j,k}_{y} = -I^{i+1,j,k} + J^{i+1,j,k}_{x} + P^{i+1,j,k}_{y}$$

$$\varphi^{x_{1}}_{i,j,k}I^{i,j,k} + \psi^{x_{1}}_{xi,j,k}J^{i,j,k}_{x} + \psi^{x_{1}}_{zi,j,k}J^{i,j,k}_{z} + \psi^{x_{1}}_{yi,j,k}J^{i,j,k}_{y} - \xi^{x_{1}}_{yi,j,k}P^{i,j,k}_{y} + \xi^{x_{1}}_{xi,j,k}P^{i,j,k}_{x} =$$

$$= \varphi^{x_{2}}_{i+1,j,k}I^{i+1,j,k} - \psi^{x_{2}}_{xi+1,j,k}J^{i+1,j,k}_{x} + \psi^{x_{2}}_{zi+1,j,k}J^{i+1,j,k}_{z} + \psi^{x_{2}}_{yi+1,j,k}J^{i+1,j,k}_{y} - \xi^{x_{2}}_{yi+1,j,k}P^{i+1,j,k}_{y} + \xi^{x_{2}}_{xi+1,j,k}P^{i+1,j,k}_{x}$$
Закон Фика
$$I^{i,j,k} + J^{i,j,k}_{x} - P^{i,j,k}_{y} = (\psi^{x_{1}}_{xi,j,k} + \psi^{x_{2}}_{xi+1,j,k})^{-1} (R^{x_{2}}_{i+1,j,k} \Phi^{x_{1}}_{i+1,j,k} - R^{x_{1}}_{i,j,k} \Phi^{x_{1}}_{i,j,k} + q^{x_{1}}_{i,j,k})$$

$$\Phi^{x_{1}}_{i,j,k} = (\varphi^{x_{1}}_{i,j,k} - \psi^{x_{1}}_{i,j,k}) I^{i,j,k}$$

$$R^{x_{n}}_{i,j,k} = (\varphi^{x_{n}}_{i,j,k} - \psi^{x_{1}}_{i,j,k})^{-1}$$

Грани х₁, х₂, у₁, у₂, законы Фика:

$$\mathbf{I}^{i,j,k} + \mathbf{J}_{x}^{i,j,k} - \mathbf{P}_{y}^{i,j,k} = (\mathbf{\psi}_{xi,j,k}^{x_{1}} + \mathbf{\psi}_{xi+1,j,k}^{x_{2}})^{-1} (\mathbf{R}_{i+1,j,k}^{x_{2}} \mathbf{\Phi}_{i+1,j,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{x_{1}} \mathbf{\Phi}_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{x_{1}})$$

 $\mathbf{I}^{i,j,k} - \mathbf{J}_{x}^{i,j,k} - \mathbf{P}_{y}^{i,j,k} = (\mathbf{\psi}_{xi,j,k}^{x_{2}} + \mathbf{\psi}_{xi-1,j,k}^{x_{1}})^{-1} (\mathbf{R}_{i-1,j,k}^{x} \mathbf{\Phi}_{i-1,j,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{x_{2}} \mathbf{\Phi}_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{x_{2}})$
 $\mathbf{I}^{i,j,k} + \mathbf{J}_{y}^{i,j,k} - \mathbf{P}_{x}^{i,j,k} = (\mathbf{\psi}_{yi,j,k}^{y_{1}} + \mathbf{\psi}_{yi,j+1,k}^{y_{2}})^{-1} (\mathbf{R}_{i,j+1,k}^{y_{2}} \mathbf{\Phi}_{i,j+1,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{y_{1}} \mathbf{\Phi}_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{y_{1}})$
 $\mathbf{I}^{i,j,k} - \mathbf{J}_{y}^{i,j,k} - \mathbf{P}_{x}^{i,j,k} = (\mathbf{\psi}_{yi,j,k}^{y_{2}} + \mathbf{\psi}_{yi,j-1,k}^{y_{1}})^{-1} (\mathbf{R}_{i,j-1,k}^{y} \mathbf{\Phi}_{i,j-1,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{y_{2}} \mathbf{\Phi}_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{y_{2}})$
 $\mathbf{R}_{i,j,k}^{a_{n}} = (\mathbf{\phi}_{i,j,k}^{a_{n}} - \mathbf{\psi}_{i,j,k}^{a_{n}}) (\mathbf{\phi}_{i,j,k}^{x_{1}} - \mathbf{\psi}_{i,j,k}^{x_{1}})^{-1}, a = x, y$

Грани
$$Z_1, Z_2,$$
законы Фика:
 $\mathbf{J}_z^{i,j,k} + \mathbf{I}^{i,j,k} + \mathbf{P}_y^{i,j,k} + \mathbf{P}_x^{i,j,k} = (\mathbf{\psi}_{zi,j,k+1}^{z_2} + \mathbf{\psi}_{zi,j,k}^{z_1})^{-1} (\mathbf{R}_{i,j,k+1}^{z_2} \mathbf{\Phi}^{i,j,k+1} - \mathbf{R}_{i,j,k}^{z_1} \mathbf{\Phi}^{i,j,k} + \mathbf{q}_{i,j,k}^{z_1}),$

$$-\mathbf{J}_{z}^{i,j,k} + \mathbf{I}^{i,j,k} + \mathbf{P}_{y}^{i,j,k} + \mathbf{P}_{x}^{i,j,k} = (\mathbf{\psi}_{zi,j,k-1}^{z_{1}} + \mathbf{\psi}_{zi,j,k}^{z_{2}})^{-1} (\mathbf{R}_{i,j,k-1}^{z_{1}} \mathbf{\Phi}^{i,j,k-1} - \mathbf{R}_{i,j,k}^{z_{2}} \mathbf{\Phi}^{i,j,k} + \mathbf{q}_{i,j,k}^{z_{2}})$$

$$6\mathbf{I}_{i,j,k} = \sum_{i,j,k}^{x_1} \boldsymbol{\Phi}_{i,j,k}^{x_1} \qquad \sum_{i,j,k}^{x_1} = 6(\boldsymbol{\varphi}_{i,j,k}^{x_1} - \boldsymbol{\psi}_{x_i,j,k}^{x_1})^{-1} \qquad \sum_{i,j,k}^{x_1} = \sum_{i,j,k}^{x_1r} - \boldsymbol{\nu}_f \sum_{i,j,k}^{x_1f} \boldsymbol{\Phi}_{i,j,k}^{x_1r_1} = \sum_{i,j,k}^{x_1r_2} \boldsymbol{\Phi}_{i,j,k}^{x_1r_2} = \sum_{i,j,k}^{x_1r_2} \boldsymbol{\Phi}_{i,j,k$$

 $\sum_{\substack{a=x(i'=i\pm 1,j'=j,k'=k),\\y(i'=i,j'=j\pm 1,k'=k),\\z(i'=i,j'=j,k'=k\pm 1)}} (\Psi_{ai',j',k'}^{a} + \Psi_{ai,j,k}^{a})^{-1} (\mathbf{R}_{i',j',k'}^{a} \Phi_{i',j',k'}^{x_{1}} - \mathbf{R}_{i,j,k}^{a} \Phi_{i,j,k}^{x_{1}}) - \sum_{i,j,k}^{x_{1}r} \Phi_{i,j,k}^{x_{1}} + \nu_{f} \sum_{i,j,k}^{x_{1}f} \Phi_{i,j,k}^{x_{1}} = 0$

Итоговое конечно-разностное семиточечное уравнение

$$(\Psi_{xi-1,j,k}^{x_{1}} + \Psi_{xi,j,k}^{x_{2}})^{-1} (\mathbf{R}_{i-1,j,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{x_{2}} \Phi_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{x_{1}}) + (\Psi_{xi+1,j,k}^{x_{2}} + \Psi_{xi,j,k}^{x_{1}})^{-1} (\mathbf{R}_{i+1,j,k}^{x_{2}} - \mathbf{R}_{i,j,k}^{x_{1}} \Phi_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{x_{2}}) + (\Psi_{yi,j-1,k}^{y_{1}} + \Psi_{xi,j,k}^{x_{2}})^{-1} (\mathbf{R}_{i-1,j,k}^{y_{1}} - \mathbf{R}_{i,j,k}^{y_{2}} \Phi_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{y_{1}}) + (\Psi_{yi,j+1,k}^{y_{2}} + \Psi_{xi,j,k}^{y_{1}})^{-1} (\mathbf{R}_{i,j+1,k}^{y_{2}} \Phi_{i,j,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{y_{1}} \Phi_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{y_{2}}) + (\Psi_{yi,j+1,k}^{z_{1}} + \Psi_{xi,j,k}^{z_{1}})^{-1} (\mathbf{R}_{i,j+1,k}^{y_{2}} \Phi_{i,j,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{y_{1}} \Phi_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{y_{2}}) + (\Psi_{zi,j,k-1}^{z_{1}} + \Psi_{zi,j,k}^{z_{1}})^{-1} (\mathbf{R}_{i,j,k-1}^{z_{2}} \Phi_{i,j,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{z_{1}} \Phi_{i,j,k}^{z_{1}} + \mathbf{q}_{i,j,k}^{z_{2}}) - (\Sigma_{i,j,k}^{x_{1}} \Phi_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{z_{1}}) + (\Psi_{zi,j,k+1}^{z_{1}} + \Psi_{zi,j,k}^{z_{1}})^{-1} (\mathbf{R}_{i,j,k+1}^{z_{2}} \Phi_{i,j,k}^{x_{1}} - \mathbf{R}_{i,j,k}^{z_{1}} \Phi_{i,j,k}^{z_{1}} + \mathbf{q}_{i,j,k}^{z_{2}}) - (\Sigma_{i,j,k}^{x_{1}} \Phi_{i,j,k}^{x_{1}} + \Psi_{zi,j,k}^{z_{1}})^{-1} (\mathbf{R}_{i,j,k+1}^{z_{2}} \Phi_{i,j,k+1}^{x_{1}} - \mathbf{R}_{i,j,k}^{z_{1}} \Phi_{i,j,k}^{z_{1}} + \mathbf{q}_{i,j,k}^{z_{2}}) - (\Sigma_{i,j,k}^{x_{1}} \Phi_{i,j,k}^{x_{1}} + \Psi_{zi,j,k}^{x_{1}})^{-1} (\mathbf{R}_{i,j,k+1}^{z_{2}} \Phi_{i,j,k+1}^{x_{1}} - \mathbf{R}_{i,j,k}^{z_{1}} \Phi_{i,j,k}^{z_{1}} + \mathbf{q}_{i,j,k}^{z_{2}}) - (\Sigma_{i,j,k}^{x_{1}} \Phi_{i,j,k}^{x_{1}} + \Psi_{zi,j,k}^{x_{1}})^{-1} (\mathbf{R}_{i,j,k+1}^{z_{2}} \Phi_{i,j,k+1}^{x_{1}} - \mathbf{R}_{i,j,k}^{z_{1}} \Phi_{i,j,k}^{z_{1}} + \mathbf{q}_{i,j,k}^{z_{2}}) - (\Sigma_{i,j,k}^{x_{1}} \Phi_{i,j,k}^{x_{1}} + \Psi_{j}^{x_{1}} \Phi_{i,j,k}^{x_{1}} + \Psi_{j}^{x_{1}} \Phi_{j,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{x_{1}}) - (\Sigma_{i,j,k}^{x_{1}} \Phi_{i,j,k+1}^{x_{1}} + \Sigma_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{x_{1}} + \mathbf{q}_{i,j,k}^{x_{1}}) - (\Sigma_{i,j,k}^{x_{1}} \Phi_{i,j,k+1}^{x_{1}} + \Sigma_{i,j,k}^{x_{1}} + \Sigma_{i,j,k}^{x_{1}} + \Sigma_{i,j,k}^{x_{1}} + \Sigma_{i,j,k}^{x_{1}} + \Sigma_{i,j,k}^{x_{1}} + \Sigma_{i,j,k}^{x_{1}} + \Sigma_{$$

Численный пример

 T.J.Trahan and E.W.Larsen. An Asymptotic Homogenized Neutron Diffusion Approximation. I Theory/ II Numerical Comparison. Proceeding of Physor2012 – Advances in Reactor Physics – Linking Research, Industry, and Education, Knoxville, Tennessee, USA, April 15-20, 2012, on CD-ROM

Тестовая задача

Отклонение собственного значения от реперного в тестовых задачах (в 0.001%)

Номер МПГ- приближения	Симметричные ячейки		Асимметричные ячейки	
	5 U-слоев	11 U-слоев	5 U-слоев	11 U-слоев
1	-1850.6	-797.5	-1870.6	-791.5
2	2100.3	-	2100.3	
3	-338.1	-72.6	-325.1	-61.6
4	462.8	-	464.5	
5	-94.6	-19.7	-84.0	-16.6
6	142.5	-	-	
7	-34.5	-8.8	-29.5	-8.1

Отклонения от реперного (Р₉₇) решения: собственное значение (в 10⁻⁵) /среднеквадратичное отклонение плотности потока нейтронов

Номер МПГ- приближения	Симметр. «крупная ячейка	Асимметр. ячейка (половина симметр.)	Асимметр. «крупная» ячейка (сдвиг 0.1 см)	Асимметр. «крупная» ячейка (сдвиг 0.2 см)
<i>L</i> =1	-797.5/	-791.5/	-812.3/	-858.9/
	0.022	0,022	0,037	0.062
L=3	-72.6/	-61.6/	-76.4/	-88.2/
	0,0037	0,0039	0,0079	0,014
L=5				-30.3/
				0,0047

Отклонение ППН от реперной при асимметричных ячейках (при сдвиге границ ячеек на.0.2 см)

Спасибо за внимание