Расчет плотности потока тепловых нейтронов в радиационной защите по программе *FRIGATE* с применением метода субмоделирования

Скобелев А.Н., Николаев А.А.

Постановка задачи

Проблемы расчетов радиационной защиты:

- большие объемы вычислительных мощностей;
- длительность расчета.

Вариант решения:

- DDL-схемы + полностью неоднородные трехмерные сетки (вычислительно эффективные и экономные модели);
- метод субмоделивания (точный расчет фрагмента полномасштабной модели с начальными ГУ).

Задача работы:

- определение эффективности использования метода субмоделирования в расчетах радиационной защиты МДО;
- верификация результатов расчета с Монте-Карло.

Демонстрационная задача — расчет условий работы ИК, размещенной в бетонной шахте радиационной защиты.

Метод субмоделирования

Метод субмоделивания — двухзаходный метод выполнения расчета, при котором в процессе первого захода выполняются вычисления на материнской сетке, а в процессе второго захода выполняется расчет модифицированного фрагмента материнской сетки (субмодели), принимающего граничные условия от материнской сетки, и имеющего внутреннюю структуру сетки (пространственной и энергетической) более подробную, чем в материнской.

Предпосылки выгоды:

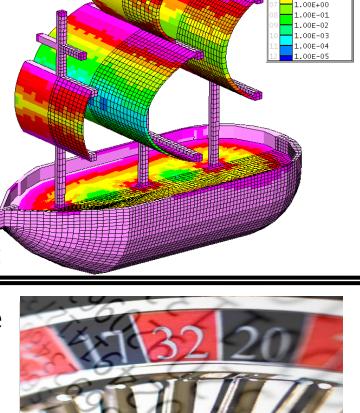
- ✓ сокращение общего времени вычислений;
- ✓ снижение требования к необходимым машинным ресурсам;
- ✓ получение необходимых расчётных данных без потерь в их методической точности.

Программный инструментарий

Frame for Reactor Integrated Groupwise

Anisotropic Transport Evaluating

FRIGATE

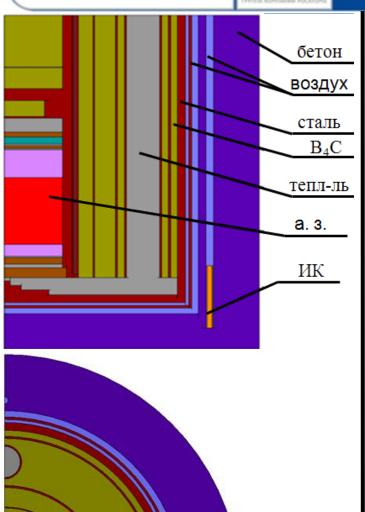

- ✓ DDL-схемы и LD-схемы МДО;
- ✓ неоднородные трехмерные сетки;
- ✓ произвольные S_N-квадратуры;
- ✓ произвольная периодичность, отражение,

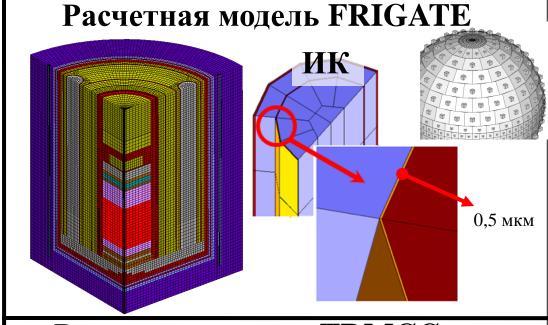
симметрия;

✓ субмоделирование по пространству и энергии

Time Dependent Monte-Carlo Code TDMCC

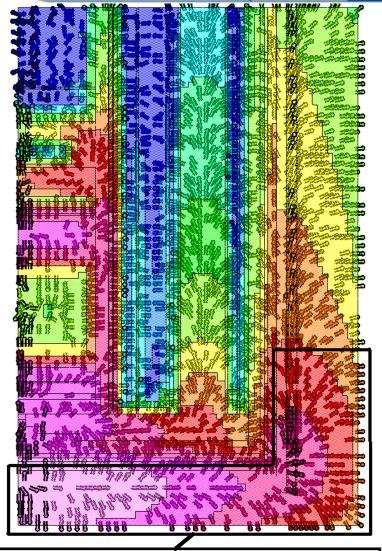
- ✓ многоцелевой Монте-Карло код;
- ✓ точная геометрия;
- ✓ непрерывное слежение по энергии

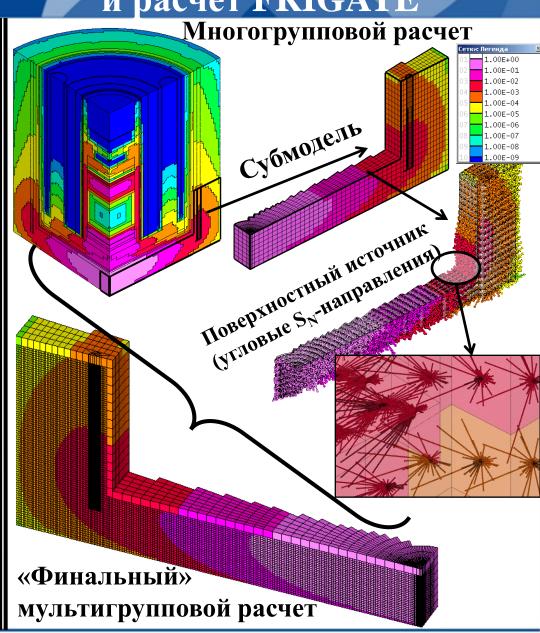



reflection

ИК

Модельная задача (слева) и расчетные модели (справа)



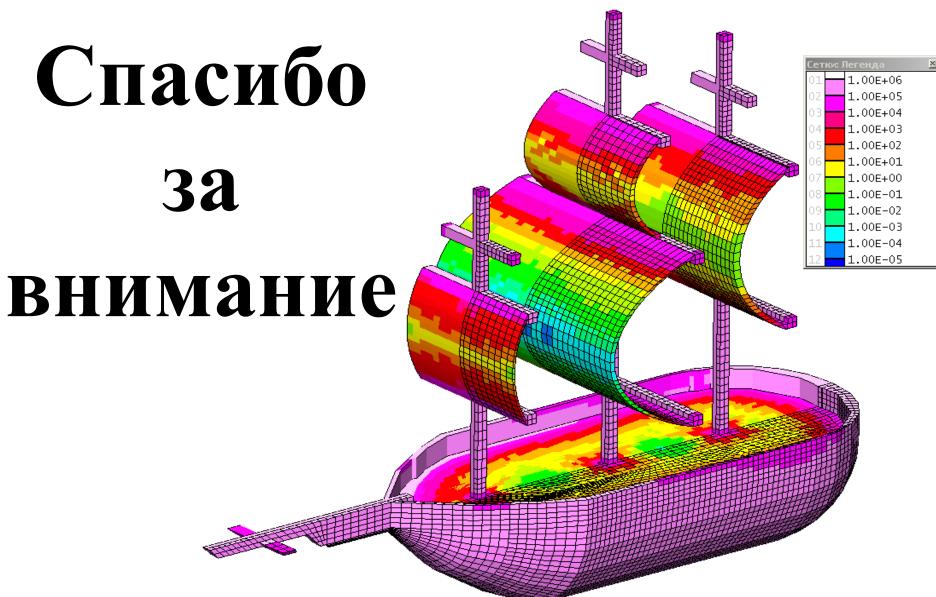


Формирование субмодели и расчет FRIGATE

Область, требующая уточнения расчета по пространству и энергии

Результаты

	FRIGATE (ENDF/B-VII.0)				
Функционал	материнская модель		субмодель		TDMCC
	30 групп	314 групп	30 групп	314 групп	(ENDF/B-VI.8) Аналоговый расчет, стат. погрешность $\approx 1 \%$
Время вычислений, ядер × час	60	1370	0,4	120	10000
Плотность потока тепловых нейтронов	9,3E+11	7,8E+11	9,3E+11	7,8E+11	6,0E+11
Количество реакций деления	1,9E+08	1,6E+08	1,9E+08	1,6E+08	1,3E+08



Заключение

- 1. Разработана тестовая расчетная модель, направленная на получение условий работы ИК в радиацинной защите;
- 2. Выполнен расчет тестовой модели по программам FRIGATE (МДО + субмоделирование) и TDMCC (Монте-Карло);
- 3. Результаты расчетов:
- экономия машинного времени при использовании метода субмоделирования <u>10 раз</u>;
- согласие результатов расчета по FRIGATE и TDMCC $\pm 25~\%$ (константно-методический характер) хороший результати при кратности ослабления 10^5

